m-Sequences

- Maximal-length sequences

Longer name: Maximal length linear shift register sequence.

- A type of cyclic code
- Generated and characterized by a generator polynomial
- Properties can be derived using algebraic coding theory
- Simple to generate with linear feedback shift-register (LFSR) circuits
- Automated

Approximate a random binary sequence.

- Disadvantage: Relatively easy to intercept and regenerate by an unintended receiver

(Serial-in/Serial-out) Shift Register

- Accept data serially: one bit at a time on a single line.
- Each clock pulse will move an input bit to the next FF.

For example, a 1 is shown as it moves across.

- Example: five-bit serial-in serial-out register.

Linear Feedback Shift-Register (LFSR)

- Binary sequences drawn from the alphabet $\{0,1\}$ are shifted through the shift register in response to clock pulses.
- Each clock time, the register shifts all its contents to the right.
- The particular 1 s and 0 s occupying the shift register stages after a clock pulse are called states.
- Suppose there are r FFs. Then a state $\underline{\mathbf{S}}$ of the SR can be represented by r bits.
- There are 2^{r} possible states.
- There are $2^{r}-1$ non-zero states.

GF(2)

- Galois field (finite field) of two elements
- Consist of
- the symbols 0 and 1 and
- the (binary) operations of
- modulo-2 addition (XOR) and
- modulo-2 multiplication.
- The operations are defined by

+	0	1
0	0	1
1	1	0

\cdot	0	1
0	0	0
1	0	1

Linear Feedback Shift-Register (LFSR)

- All the values are in $\operatorname{GF}(2)$ which means they can only be 0 or 1 .
- The value of g_{i} determines whether the output of the $k^{\text {th }} \mathrm{FF}$ will be in the sum that produce the feedback bit.
- 1 signifies closed or a connection and
- 0 signifies open or no connection.
- Ex. Suppose $g_{1}=0, g_{2}=1, g_{3}=1$ in our LFSR.

m-sequence generator (1)

- Start with a "primitive polynomial"

$$
g(x)=g_{0}+g_{1} x+g_{2} x^{2}+\cdots+g_{r} x^{r}
$$

${ }^{-}{ }_{r}=$ degree of the polynomial

- Use r flip-flops.
- The feedback taps in the feedback shift register are selected to correspond to the coefficients of the primitive polynomial.
- Ex. $g(x)=1+x^{2}+x^{3}$ is a primitive polynomial.

$$
=\underset{g_{0}}{1}+{\underset{g_{1}}{ }}_{0} x+\underset{g_{2}}{1} x^{2}+{\underset{g_{3}}{ }}_{1} x^{3}
$$

(Degree: $\mathrm{r}=3 \boldsymbol{\rightarrow}$ use 3 flip-flops)

m-sequence generator (2)

- We start with state 100.
- You may choose different non-zero state.
- Note that if we start with 000, we won't go anywhere.

- Any polynomial generates periodic sequence.
- The maximum period is $2^{r}-1$.
- In this example, the state cycles
 through all $2^{3}-1=7$ non-zero states.
m-sequence: $001011100101110010111 \ldots$

Primitive Polynomial

- Definition: A LFSR generates an m-sequence if and only if (starting with any nonzero state,) it visits all possible nonzero states (in one cycle).
- Technically, one can define primitive polynomial using concepts from finite field theory.
- Fact: A polynomial generates m-sequence if and only if it is a primitive polynomial.
- Therefore, we use this fact to define primitive polynomial.
- For us, a polynomial is primitive if the corresponding LFSR circuit generates m-sequence.

Sample Exam Question

Draw the complete state diagrams for linear feedback shift registers (LFSRs) using the following polynomials.
Does either LFSR generate an m-sequence?

1. $g(x)=1+x^{2}+x^{3}$
2. $g(x)=1+x+x^{2}+x^{3}$

Solution (1)

Draw the complete state diagrams for linear feedback shift registers (LFSRs) using the following polynomials.
Does either LFSR generate an m-sequence?

1. $g(x)=1+x^{2}+x^{3}$

The corresponding LFSR generates an msequence because the state diagram contains a cycle that visits all possible nonzero states.
We can also conclude that $g(x)=1+x^{2}+x^{3}$ is a primitive polynomial.

Solution (2)

m-Sequences: More properties

1. The contents of the shift register will cycle over all possible $2^{r}-1$ nonzero states before repeating.
2. Contain one more 1 than 0 (Slightly unbalanced)
3. Shift-and-add property: Sum of two (cyclic-)shifted m-sequences is another (cyclic-)shift of the same m-sequence
4. If a window of width r is slid along an m -sequence for $N=2^{r}-1$ shifts, each r tuple except the all-zeros r-tuple will appear exactly once
5. For any m-sequence, there are

- One run of ones of length r
- One run of zeros of length $r-1$
- One run of ones and one run of zeroes of length r-2
- Two runs of ones and two runs of zeros of length r-3
- Four runs of ones and four runs of zeros of length r-4
- ...
- $2^{\mathrm{r}-3}$ runs of ones and $2^{\mathrm{r}-3}$ runs of zeros of length 1

m-Sequences: More Properties

1. The contents of the shift register will cycle over all possible $2^{r}-1$ nonzero states before repeating.
2. Each cycle contains exactly one more 1 s than 0 s (Slightly unbalanced)

$$
\begin{gathered}
g(x)=1+x^{2}+x^{3} \\
\text { period }=2^{r-1}=2^{3}-1=7 \\
4 \text { 1s } \\
3 \text { Os }
\end{gathered}
$$

m-Sequences: More Properties

3. Shift-and-add property: Sum of two (cyclic-)shifted msequences is another (cyclic-)shift of the same m-sequence

00101110010111001011100101110010111001011100101110010111
$\square 0$ phase shift: 0010111
1 phase shift: 0101110
2 phase shift: 1011100
3 phase shift: 0111001
4 phase shift: 1110010
5 phase shift: 1100101
6 phase shift: 1001011
4. If a window of width r is slid along an m -sequence for $N=2^{r}-1$ shifts, each r-tuple except the all-zeros r-tuple will appear exactly once

m-Sequences: More Properties

5. For any m -sequence, there are 2^{r-1} runs.

- One run of ones of length r
- One run of zeros of length $r-1$
- One run of ones and one run of zeroes of length $r-2$
- Two runs of ones and two runs of zeros of length r-3
- Four runs of ones and four runs of zeros of length $r-4$
- . .
- $2^{r .3}$ runs of ones and 2^{r-3} runs of zeros of length 1

In other words, relative frequency for runs of length ℓ is $\begin{cases}\frac{1}{2^{\ell}}, & \ell<r, \\ \frac{1}{2^{\ell-1}}, & \ell=r .\end{cases}$

$\underbrace{001011100101110010111001011100101110010111}$

m-Sequences: Another Example

- $2^{5}-1=31$-chip m-sequence
- The following sequence contains 16 runs

0001111100110100100001010111011

- Rel. Freq of Run Lengths

Run Length	Rel. Freq.
5	$1 / 16$
4	$1 / 16$
3	$2 / 16$
2	$4 / 16$
1	$8 / 16$

$\left\{\begin{array}{lll}11111 & 1 / 16 \\ 0000 & 1 / 16 \\ \frac{1}{2^{\ell}}, & \ell<5, & 000 \\ \frac{1}{2^{\ell-1}}, \quad l=5 . & 111 & 1 / 16 \\ & 00 & 2 / 16 \\ & 1 & 4 / 16 \\ & 0 & 4 / 16\end{array}\right.$

(Time) Autocorrelation Function for Energy Sequence

0)

(Time) Autocorrelation Function for Energy Sequence

(Time) Autocorrelation Function for

 Energy Sequence

$$
\left.\begin{array}{llll}
3 & 2 & 1 & 0
\end{array}\right)
$$

MATLAB: corr

- $r=x \operatorname{corr}(x, y)$ plug-in es here to find auto correlation
- Return the cross-correlation of two discrete-time sequences, X and y.
- If X and Y have different lengths, the function appends zeros at the end of the shorter vector so it has the same length as the other.
- Th $\operatorname{lag}(\tau)$ i. varied from $-(N-1)$ to $(N-1)$ where N is the longer length of the two sequences.
- [r rags $=x \operatorname{corr}(\ldots)$
- Also returns vector with the lags (τ) at which the correlations are computed.

(Time) Autocorrelation Function for

 Energy Sequence```
close all
x = [0 2 4 4 3 2 1 0];
% plot the signal
plot(x,'--','LineWidth',1.5)
hold on
plot(x,'o','LineWidth',1.5)
ylabel('x[n]')
xlabel('n')
% plot auto-correlation function
figure
[R lag] = xcorr(x,x);
plot(R,'--','LineWidth',1.5)
hold on
plot(R,'o','LineWidth',1.5)
ylabel('R_x[\tau]')
xlabel('\tau')
```



## (Time) Autocorrelation Function for Power and Periodic Sequence

|  | Time average $\langle x[n]\rangle$ | Autocorrelation $R_{x}[\tau]$ |
| :---: | :---: | :---: |
| Power Sequence | $\lim _{T \rightarrow \infty} \frac{1}{2 T} \sum_{n=-T}^{T} x[n]$ | $\begin{aligned} & \langle x[n] x[n-\tau]\rangle=\lim _{T \rightarrow \infty} \frac{1}{2 T} \sum_{n=-T}^{T} x[n] x[n-\tau] \\ & \langle x[n] x[n+\tau]\rangle=\lim _{T \rightarrow \infty} \frac{1}{2 T} \sum_{n=-T}^{T} x[n] x[n+\tau] \end{aligned}$ |
| Periodic Sequence with period $T_{0}$ | $\frac{1}{T_{0}} \sum_{T_{0}} x[n]$ | $\frac{1}{T_{0}} \sum_{T_{0}} x[n] x[n-\tau]=\frac{1}{T_{0}} \sum_{T_{0}} x[n] x[n-\tau]$ |
|  |  |  |

## Example: (Time) Autocorrelation Function for Periodic Sequence



## Example: (Time) Autocorrelation <br> Function for Periodic Sequence

$$
\text { a, } \quad \text { 5.67 } \prod_{1}^{4} R_{x}[\tau]
$$

## Back to m-Sequences

$c[n]: 00101110010111001011100101110010111001011100101110010111$


In actual transmission, we will map " 0 and 1 " to " +1 and -1 ", respectively.

$$
\left(\begin{array}{lllll}
0 & \oplus & 0 & = & 0 \\
0 & \oplus & 1 & = & 1 \\
1 & \oplus & 0 & = & 1 \\
1 & \oplus & 1 & = & 0
\end{array}\right.
$$


$0 \rightarrow 1$
$1 \rightarrow-1$
$\begin{array}{ccccc}-1 & ? & 1 & = & -1 \\ -1 & ? & -1 & = & 1\end{array}$, Easy to

From the previous slide the mapping that we will

## Back to m-Sequences

 use is$c[n]: 00101110010111001011100101110010111001011100101110010111$ 0010111

## property xx 2 property

"one more is then Os"
1001011
In actual transmission, we will map " 0 and 1 " to " +1 and -1 ", respectively.

Autocorrelation when not aligned:

$$
\begin{array}{rrrrrrr}
-1 & 1 & -1 & -1 & -1 & 1 & 1 \\
1 & 1 & -1 & 1 & -1 & -1 & -1
\end{array}
$$

## m-Sequences: Autocorrelation function




## m-Sequences: Autocorrelation function




## Autocorrelation Function for Periodic Binary Random Sequence

Consider a periodic sequence whose one period is given by $\left[\begin{array}{llllllllll}{[-1} & 1 & -1 & -1 & 1 & -1 & 1 & 1 & -1 & -1\end{array}\right]$


The shift property of binary random sequence implies that

$$
\begin{aligned}
R_{x}[\tau] & =\langle x[n] x[n-\tau]\rangle \\
& \xrightarrow[\text { LL }]{\langle\rightarrow \infty} \mathbb{E}[x[n] x[n-\tau]] \\
& =1 \times \frac{1}{2}+(-1) \times \frac{1}{2}=0
\end{aligned}
$$

## Autocorrelation Function for Periodic Binary Random Sequence

Consider a periodic sequence whose one period is given by 1-2*randi([0 1],1,100)
 The shift property of binary random sequence implies that

$$
\begin{aligned}
R_{x}[\tau] & =\underset{\sim}{\langle x[n] x[n-\tau]\rangle} \\
& \xrightarrow[\text { LLN }]{ } \mathbb{E}[x[n] x[n-\tau]] \\
& =1 \times \frac{1}{2}+(-1) \times \frac{1}{2}=0
\end{aligned}
$$

## Autocorrelation Function for Periodic Binary Random Sequence

Consider a periodic sequence whose one period is given by 1-2*randi([0 1],1,1000)


The shift property of binary random sequence implies that

$$
\begin{aligned}
R_{x}[\tau] & =\langle x[n] x[n-\tau]\rangle \\
& \xrightarrow[\text { LLN }]{\langle\rightarrow \infty} \mathbb{E}[x[n] x[n-\tau]] \\
& =1 \times \frac{1}{2}+(-1) \times \frac{1}{2}=0
\end{aligned}
$$

## Example: Autocorrelation Function for Periodic Binary Random Sequence

Consider a periodic sequence whose one period is given by 1-2*randi([0 1],1,10000)


The shift property of binary random sequence implies that

$$
\begin{aligned}
R_{x}[\tau] & =\langle x[n] x[n-\tau]\rangle \\
& \xrightarrow[\text { LLN }]{\text { LN }} \mathbb{E}[x[n] x[n-\tau]] \\
& =1 \times \frac{1}{2}+(-1) \times \frac{1}{2}=0
\end{aligned}
$$

## Autocorrelation Function for Periodic Binary Random Sequence

Consider a periodic sequence whose one period is given by 1-2*randi([0 1],1,100000)


The shift property of binary random sequence implies that

$$
\begin{aligned}
R_{x}[\tau] & =\langle x[n] x[n-\tau]\rangle \\
& \xrightarrow[\text { LLN }]{\text { LN }} \mathbb{E}[x[n] \times[n-\tau]] \\
& =1 \times \frac{1}{2}+(-1) \times \frac{1}{2}=0
\end{aligned}
$$

## Autocorrelation and PSD

- (Normalized) autocorrelations of maximal sequence and random binary sequence.


- Power spectral density of maximal sequence.
$R(\tau)=\frac{1}{T_{0}} \int_{T_{0}} x(t) x(t+\tau) \mathrm{d} t= \begin{cases}\left(1-\frac{|\tau|}{T_{T}}\right)\left(1+\frac{1}{N}\right)-\frac{1}{N}, & |\tau| \leq T_{e} \\ -\frac{1}{N} . & T_{c}<|\tau| \leq \frac{N-1}{2} T_{c},\end{cases}$
(4.2)
where the integration is over any period, $T_{0}=N T_{c}$.
$S_{t}(f)=\sum_{m=-\infty}^{\infty} P_{m} \delta\left(f-m f_{0}\right) . f_{0}=1 / N T_{c}$,
where
$P_{m}=\left\{\begin{array}{l}{\left[(N+1) / N^{2}\right] \operatorname{sinc}^{2}(m / N), m \neq 0, \operatorname{sinc}(x)=(\sin \pi x) /(\pi x)} \\ 1 / N^{2}, m=0 .\end{array}\right.$


# References: m-sequences 

- Karim and Sarraf, W-CDMA and cdma2000 for 3G Mobile Networks, 2002.
- Page 84-90
- Viterbi, CDMA: Principles of Spread Spectrum Communication, 1995
- Chapter 1 and 2
- Goldsmith, Wireless Communications, 2005
- Chapter 13
- Tse and Viswanath, Fundamentals of Wireless Communication, 2005
[TK5103.452 K37 2002]
[TK5103.45 V57 1995]
 - Section 3.4.3


## Review: m-sequence



One important collection of these is the collection of $\mathbf{m}$-sequences.
Generated with LFSR whose connections corresponds to coefficients of primitive polynomials. The resulting sequence achieves the maximum period (length) of $N=2^{r}-1$ where $r$ is the degree of primitive polynomial.

