
m-Sequences
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Maximal-length sequences

A type of cyclic code
Generated and characterized by a generator polynomial
Properties can be derived using algebraic coding theory

Simple to generate with linear feedback shift-register
(LFSR) circuits

Automated

Approximate a random binary sequence.

Disadvantage: Relatively easy to intercept and regenerate by 
an unintended receiver [Ziemer, 2007, p 11]

[Goldsmith, 2005, p 387]

Longer name: Maximal length 
linear shift register sequence.

(Serial-in/Serial-out) Shift Register

38

Accept data serially: one bit at a time on a single line.

Each clock pulse will move an input bit to the next FF. 
For example, a 1 is shown as it moves across.

Example: five-bit serial-in serial-out register.

C C C C

D D D D

C

D QQ Q Q Q
1 1 1 1 1 1

CLKCLKCLKCLKCLK



Linear Feedback Shift-Register (LFSR)
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s1 s2 s3

g1 g2 g3

CLK

Shift-register

Feedback Linear (combination)

Binary sequences drawn from the alphabet {0,1} are shifted through the 
shift register in response to clock pulses. 

Each clock time, the register shifts all its contents to the right.
The particular 1s and 0s occupying the shift register stages after a clock 
pulse are called states.

Suppose there are r
FFs. Then a state of 
the SR can be 
represented by r bits.

There are possible 
states.
There are 
non-zero states.

GF(2)
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Galois field (finite field) of two elements 

Consist of 
the symbols 0 and 1 and 
the (binary) operations of 

modulo-2 addition (XOR) and 

modulo-2 multiplication. 

The operations are defined by



Linear Feedback Shift-Register (LFSR)
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All the values are in GF(2) which means they can only be 0 or 1.
The value of gi determines whether the output of the kth FF will be in the sum 
that produce the feedback bit.

1 signifies closed or a connection and 
0 signifies open or no connection.

Ex. Suppose in our LFSR.

s1

0

s2 s3

1 1

s1 s2 s3

m-sequence generator (1)
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Start with a “primitive polynomial”

r = degree of the polynomial

Use r flip-flops.

The feedback taps in the feedback shift register are selected 
to correspond to the coefficients of the primitive polynomial.

Ex. is a primitive polynomial.

(Degree: r = 3 use 3 flip-flops)

(See Section 13.4.1 in [Lathi, 1998])

s1 s2 s3



m-sequence generator (2)
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s1 s2 s3
output

We start with state 100. 
You may choose different non-zero state.
Note that if we start with 000, we won’t go anywhere.

Any polynomial generates 
periodic sequence.

The maximum period is .

In this example, the state cycles 
through all non-zero 
states.

output

State Diagram

44

s1 s2 s3
output

100

101

010

110
111

011

001

000

output



Primitive Polynomial
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Definition: A LFSR generates an m-sequence if and only 
if (starting with any nonzero state,) it visits all possible 
nonzero states (in one cycle).

Technically, one can define primitive polynomial using 
concepts from finite field theory.

Fact: A polynomial generates m-sequence if and only if it is a 
primitive polynomial.

Therefore, we use this fact to define primitive polynomial.

For us, a polynomial is primitive if the corresponding 
LFSR circuit generates m-sequence.

Sample Exam Question
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Draw the complete state diagrams for linear feedback shift 
registers (LFSRs) using the following polynomials. 
Does either LFSR generate an m-sequence?

1.

2.



Solution (1)
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Draw the complete state diagrams for linear feedback shift 
registers (LFSRs) using the following polynomials. 
Does either LFSR generate an m-sequence?

1.

100

101

010

110
111

011

001

000

The corresponding LFSR 
generates an m-
sequence because the 
state diagram contains a 
cycle that visits all possible 
nonzero states.
We can also conclude that 

is a 
primitive polynomial.

s1 s2 s3 output

Solution (2)

48



m-Sequences: More properties
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1. The contents of the shift register will cycle over all possible 2r-1 nonzero states 
before repeating.

2. Contain one more 1 than 0 (Slightly unbalanced)
3. Shift-and-add property: Sum of two (cyclic-)shifted m-sequences is 

another (cyclic-)shift of the same m-sequence
4. If a window of width r is slid along an m-sequence for N = 2r-1 shifts, each r-

tuple except the all-zeros r-tuple will appear exactly once
5. For any m-sequence, there are

One run of ones of length r
One run of zeros of length r-1
One run of ones and one run of zeroes of length r-2
Two runs of ones and two runs of zeros of length r-3
Four runs of ones and four runs of zeros of length r-4
…
2r-3 runs of ones and 2r-3 runs of zeros of length 1

m-Sequences: More Properties

50

1. The contents of the shift register will cycle over all possible 
2r-1 nonzero states before repeating.

2. Each cycle contains exactly one more 1s than 0s 
(Slightly unbalanced)

0

1

0

0
1

1

1

00101110010111001011100101110010111001011100101110010111

[S.W. Golomb, Shift Register Sequences, Holden-Day, San Francisco, 1967.]
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3. Shift-and-add property: Sum of two (cyclic-)shifted m-
sequences is another (cyclic-)shift of the same m-sequence

4. If a window of width r is slid along an m-sequence for N = 2r-1 shifts, 
each r-tuple except the all-zeros r-tuple will appear exactly once

00101110010111001011100101110010111001011100101110010111

0 phase shift: 0010111
1 phase shift: 0101110
2 phase shift: 1011100
3 phase shift: 0111001
4 phase shift: 1110010
5 phase shift: 1100101
6 phase shift: 1001011

= 1100101 

00101110010111001011100101110010111001011100101110010111
[S.W. Golomb, Shift Register Sequences, Holden-Day, San Francisco, 1967.]

m-Sequences: More Properties
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5. For any m-sequence, there are 2r-1 runs.
One run of ones of length r
One run of zeros of length r-1
One run of ones and one run of zeroes of length r-2
Two runs of ones and two runs of zeros of length r-3
Four runs of ones and four runs of zeros of length r-4
…
2r-3 runs of ones and 2r-3 runs of zeros of length 1

In other words, relative frequency for runs of length is 

Runs:
111
00
1,0

0

1

0

0
1

1

1
001011100101110010111001011100101110010111

[S.W. Golomb, Shift Register Sequences, Holden-Day, San Francisco, 1967.]



m-Sequences: Another Example
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25-1 = 31-chip m-sequence

The following sequence contains 16 runs

Rel. Freq of Run Lengths

0001111100110100100001010111011

11111 1/16
0000 1/16
111 1/16
000 1/16
11 2/16
00 2/16
1 4/16
0 4/16

Rel. Freq of Runs

Run Length Rel. Freq.
5 1/16
4 1/16
3 2/16
2 4/16
1 8/16

[S.W. Golomb, Shift Register Sequences, Holden-Day, San Francisco, 1967.]

(Time) Autocorrelation Function for 
Energy Sequence
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34



(Time) Autocorrelation Function for 
Energy Sequence
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x
34

28
28

(Time) Autocorrelation Function for 
Energy Sequence
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34

28
28



MATLAB: xcorr
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r = xcorr(x,y)
Return the cross-correlation of two discrete-time sequences, x
and y. 
If x and y have different lengths, the function appends zeros at 
the end of the shorter vector so it has the same length as the 
other. 

The lag ( ) is varied from to where is the 
longer length of the two sequences.

[r,lags] = xcorr(___)
Also returns vector with the lags ( ) at which the correlations 
are computed.

(Time) Autocorrelation Function for 
Energy Sequence 

58

close all
x = [0 2 4 3 2 1 0];

% plot the signal
plot(x,'--','LineWidth',1.5)
hold on
plot(x,'o','LineWidth',1.5)
ylabel('x[n]')
xlabel('n')

% plot auto-correlation function
figure
[R lag] = xcorr(x,x);
plot(R,'--','LineWidth',1.5)
hold on
plot(R,'o','LineWidth',1.5)
ylabel('R_x[\tau]')
xlabel('\tau')



(Time) Autocorrelation Function for 
Power and Periodic Sequence
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Time average Autocorrelation 

Power Sequence

Periodic Sequence
with period T0

Example: (Time) Autocorrelation 
Function for Periodic Sequence

60



Example: (Time) Autocorrelation 
Function for Periodic Sequence
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5.67

4.67

Back to m-Sequences
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00101110010111001011100101110010111001011100101110010111
0010111

1001011
In actual transmission, we will map “0 and 1” to “+1 and -1”, respectively.

:



Back to m-Sequences
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00101110010111001011100101110010111001011100101110010111
0010111

1001011

-1  1 -1 -1 -1  1  1
1  1 -1  1 -1 -1 -1
-1  1  1 -1  1 -1 -1 = -1

Autocorrelation when not aligned:

:

In actual transmission, we will map “0 and 1” to “+1 and -1”, respectively.

m-Sequences: Autocorrelation function
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0010111



m-Sequences: Autocorrelation function
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1010111011000111110011010010000

Autocorrelation Function for Periodic 
Binary Random Sequence
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Consider a periodic sequence whose one period is given by  

[-1     1    -1    -1     1    -1     1     1    -1    -1]

The shift property of binary 
random sequence implies 
that

x

n

R x n x n

x n x n



Autocorrelation Function for Periodic 
Binary Random Sequence
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Consider a periodic sequence whose one period is given by  

1-2*randi([0 1],1,100)

The shift property of binary 
random sequence implies 
that

x

n

R x n x n

x n x n

Autocorrelation Function for Periodic 
Binary Random Sequence
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Consider a periodic sequence whose one period is given by  

1-2*randi([0 1],1,1000)

The shift property of binary 
random sequence implies 
that

x

n

R x n x n

x n x n



Example: Autocorrelation Function for 
Periodic Binary Random Sequence
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Consider a periodic sequence whose one period is given by  

1-2*randi([0 1],1,10000)

The shift property of binary 
random sequence implies 
that

x

n

R x n x n

x n x n

Autocorrelation Function for Periodic 
Binary Random Sequence
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Consider a periodic sequence whose one period is given by  

1-2*randi([0 1],1,100000)

The shift property of binary 
random sequence implies 
that

x

n

R x n x n

x n x n



Autocorrelation and PSD
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(Normalized) autocorrelations of maximal sequence and 
random binary sequence.

Power spectral density of maximal sequence.
[Torrieri , 2005, Fig 2.9]

[Torrieri , 2005, Fig 2.10]
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DSSS: m t c t

0  0  1  0  1  1  1  0  0  1  0  1
1  1 -1  1 -1 -1 -1  1  1 -1  1 -1

Spectral spreading waveform

Spreading code/sequence

c[n]

Imitate properties 
of Bernoulli trials

Pseudo-random

One important collection of these is the collection of m-sequences.

Generated with LFSR whose connections corresponds to coefficients 
of primitive polynomials. The resulting sequence achieves the 
maximum period (length) of where r is the degree of 
primitive polynomial.


